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Figure 1: Contact-hardening Soft Shadows in Sponza scene. Note how the green adornments’ shadows are
hard (because the shadows are close to the adornments) whereas shadows of poles hanged high in the air
(poles are not visible in this screenshot) cast very blurry, barely visible shadows (like on the green adornment
in the center of the figure or on the lit wall above the arc). Shadows of the columns in the center of Sponza
best present contact-hardening nature of shadows. The content presented here, but from a different point
of view, will be a subject of following screenshots. Compare this screenshot with screenshot 2 to better
understand which objects’ shadows we will be inspecting throughout the article.

Shadow Mapping [15] is by far the most prevalent technique used to render shadows in real-time. One
of its advantages is that it’s quite easy to get decent soft shadows with this technique as in [14]. From
that point on we can go straight to contact-hardening soft shadows (CHSS) which was first introduced in
Percentage-Closer Soft Shadows (PCSS) paper [7]. [2] reviews the subject extensively.

Soft shadows are slower than standard shadow mapping because they usually require taking more than
one shadow map sample, as in aforementioned [14]. There are alternative approaches however – Exponential
Shadow Maps (ESM) [6] and Variance Shadow Maps (VSM) [10] – that treat shadow map texels as random
variables and apply statistical methods on them. These methods are usually faster but suffer from annoying
artifacts like light-bleeding. A completely different approach to producing soft shadows is to blur them
in screen space as in [4]. It’s a very interesting approach but comes with all problems associated with
computing in screen space – like how to blur a shadow boundary that is covering the entire screen without
killing the GPU?

Contact-hardening soft shadows, based on [7], are even slower than regular soft shadows because they
require even more samples to look for an average occluder’s depth that is used in estimation of penumbra
(region of transition between fully-lit and fully-shadowed areas). So up from barely one shadow map sample
we might end up with 16 for occluder’s depth estimation and 32 for actual shadow map filtering. That is a lot
by today’s standards, especially having video game consoles in mind. One implementation worth checking
out that delivered with a big commerical game is [5].

Statistical methods, like ESM and VSM, and screen space methods both have their merits. In this ar-
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ticle however I’ll only focus on how to improve on PCSS. We will start with how to achieve decently big
penumbras without the need to take dozens of samples and will proceed on how to make soft shadows
contact-hardening at only a fraction of additional GPU time. We will also investigate checkerboarding and
see how that relatively new optimization approach performs with regard to shadows rendering.

This article is meant for audience that already has experience in implementing shadow mapping and
would like to have fast contact-hardening soft shadows in their games/simulations. This work is heavily
based on PCSS [7] and aspires to be its improvement. There is a demo application [11] presenting techniques
described here.

Figure 1 presents contact-hardening soft shadows in an actual scenario.

1 Soft Shadows with Few Samples
In order to have bigger penumbra regions a large number of shadow map samples is needed. An initial
approach usually involves taking all shadow map samples within a given region. That can be a lot of
samples, particularly when the shadow map is of high resolution (for a high-res shadow map, to cover the
same world space region, more samples are needed than for a lower-res shadow map, assuming they both
cover the same region in world space). A way to speed this up is to use GPU’s sample gather instructions,
just like they did in [5] and what is described in [12]. With gather instructions we can reduce the number of
sampling operations in a shader four times. But even that might not be enough for big sample kernels that
one might want for elongated soft sunlight shadows.

An alternative to sampling the whole region is to randomly pick a few samples in the region and only
use those. But if we take the same random set of samples and apply it to all pixels in the region we will end
up with quite nasty banding. Compare figures 2 and 3. To counter this effect we can make sure that each
pixel in the region will use a different set of random samples. This will result in noisy shadows, what usually
is preferred to banding, but not always. Both have their mertis – noise gives randomness whereas banding
gives stability. Ideally we would like something in-between. Turns out that various researchers have worked
on this problem and came up with interesting solutions.

We have actually two problems right now to solve. The first one is to figure out what samples to pick for
shadow map sampling. The second one is in what way we should pick different samples for different pixels
in the region – as we know, using exactly the same samples for all pixels in the region causes banding. We
will solve the first problem using Vogel disk samples and the second with interleaved gradient noise.

1.1 Vogel Disk
Vogel disk algorithm [3] [1] spreads samples on a disk evenly, as shown in figure 4. A great feature of Vogel
disk is that when you rotate the points they will never map onto themselves (a given sample will not map
onto itself nor any other sample), unless you rotate by 2π.

Listing 1 shows how to generate Vogel disk coordinates in a shader.

1 f l o a t 2 VogelDiskSample ( i n t sampleIndex , i n t samplesCount , f l o a t p h i )
2 {
3 f l o a t GoldenAngle = 2 . 4 f ;
4
5 f l o a t r = s q r t ( s amp le Index + 0 . 5 f ) / s q r t ( samplesCoun t ) ;
6 f l o a t t h e t a = sample Index ∗GoldenAngle + p h i ;
7
8 f l o a t s i n e , c o s i n e ;
9 s i n c o s ( t h e t a , s i n e , c o s i n e ) ;
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Figure 2: Naive shadows with 11×11 kernel, that is 121 samples.

Figure 3: Shadows with 16 samples. Banding is seen because each pixel uses the same shadow map sample
coordinates.
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Figure 4: Vogel disk.

10
11 r e t u r n f l o a t 2 ( r ∗ c o s i n e , r ∗ s i n e ) ;
12 }

Listing 1: Vogel disk samples generation.

Alternatively to Vogel disk a somewhat similar set of samples can be generated with blue noise. Blue
noise is also often used when not-that-random-randomness is needed, as in [8]. I checked both sets of
samples and found that, at least for shadows, Vogel seems to be producing more accurate results with less
undersampling. Also Vogel has the advantage that it’s very cheap to compute at runtime. In source code of
the demo there is an array declared that stores blue noise samples.

1.2 Interleaved Gradient Noise
Figure 3 actually uses Vogel disk samples for all screen’s pixels but that is not enough to compensate for
a low number of samples used. Vogel disk really shines when used in combination with a good random
function applied per-pixel. Let’s say that you have a pixels region where each pixel in the region uses the
same Vogel disk samples (shown in figure 4) but each pixel applies slightly different rotation to all these
Vogel samples, such that this rotation value spans range of [0,2π] for different pixels. This will guarantee
that all pixels in the region will sample the shadow map with different sets of samples.

A good random function, called interleaved gradient noise, was developed by [9]. This function takes
as input the pixel’s window space coordinates and outputs a "random" number in [0,1] range. Multiplying
the result by 2π and passing as argument phi to VogelDiskSample will result in very high quality, very
cheap shadows, as presented in figure 5. Usage of interleaved gradient noise is the only difference between
the result from figure 5 and 3. Also note how shadows in figure 5 are nicely rounded as compared to
squary/blocky in figure 2. The reason for this is that in the latter case a naive 11×11 rectangular filter was
used.

Listing 2 presents interlaved gradient noise function.

1 f l o a t I n t e r l e a v e d G r a d i e n t N o i s e ( f l o a t 2 p o s i t i o n _ s c r e e n )
2 {
3 f l o a t 3 magic = f l o a t 3 ( 0 . 0 6 7 1 1 0 5 6 f , 0 .00583715 f , 52 .9829189 f ) ;
4 r e t u r n f r a c ( magic . z ∗ f r a c ( d o t ( p o s i t i o n _ s c r e e n , magic . xy ) ) ) ;
5 }

Listing 2: Interleaved Gradient Noise.
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Figure 5: Interleaved Gradient Noise together with Vogel disk. Only 16 shadow map samples.

2 Contact-hardening Soft Shadows
In this section we will see how contact-hardening shadows work, as presented in [7]. After that we will go
through two different ways that speed up the base algorithm.

2.1 Regular Solution
To add contact-hardening’ness to soft shadows all we need is to know how big penumbra for a given pixel
is, or in other words, how big the shadow map sampling kernel for a given pixel should be. This is estimated
with a procedure called average blocker search shown in figure 6. We have a receiver, whose little red square
is the pixel we’re calculating shadows for. There is also a blocker floating above the receiver that blocks
some light and finally a light source (and its shadow map). We need to find depths (in light space) of pixels
that block the red square from light, average those depths and use that average to compute size of penumbra
in that area.

Think about what this particular shadow map from figure 6 contains. The right side of that shadow map
contains depths of the blocker, whereas the left side stores the blue receiver’s depths. If we take some kernel
around the receiver’s red area and take a few samples (orange dots) to sample the shadow map some of
those samples will sample the blocker’s depths (samples that are on the right side) and some will sample
the receiver (samples that are on the left side). Since the red area’s depth is more or less equal (up to some
bias that we usually employ in shadow mapping techniques) to the depths to the left we don’t consider them
(those depths) as blockers. But we do treat as blockers depths that are smaller (closer to the light) than the
depth of the red area, which in this case are depths that come from the green blocker. These depths, from the
green blocker, are averaged together to yield average occluder’s depth that will let us estimate pixel shadow’s
penumbra.

It is important to realize that this algorithm has its drawbacks. Look again at figure 6 and the blocker.
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Figure 6: Average blocker search. Orange dots/samples’ depths are checked against depths in the shadow
map. Shadow map’s depths that are closer to the light are considered blockers and are averaged together.

Now imagine you have not one but two such blockers where one of them (call it b1) is very close to the light
source and the second one (call it b2) is very close to the receiver. Since shadow map only stores depths
of the closest layer, that is blocker b1 in this case, it has no information about blocker’s b2 depths. And it
is blocker b2’s depths that we care about in this case. This is where average blocker search based on only
one-layer shadow map will fail. An obvious solution to this problem would be to store more layers of depths
in the shadow map but that would be an overkill. Fortunately, artifacts that are result of this drawback are
often negligible.

Listing 3 shows a function that calculates penumbra, which is a value used to scale shadow map sampling
kernel.

1 f l o a t Penumbra ( f l o a t g r a d i e n t N o i s e , f l o a t 2 shadowMapUV , f l o a t z_shadowMapView , i n t
samplesCoun t )

2 {
3 f l o a t a v g B l o c k e r s D e p t h = 0 . 0 f ;
4 f l o a t b l o c k e r s C o u n t = 0 . 0 f ;
5
6 f o r ( i n t i = 0 ; i < samplesCoun t ; i ++)
7 {
8 f l o a t 2 sampleUV = V o g e l D i s k O f f s e t ( i , samplesCount , g r a d i e n t N o i s e ) ;
9 sampleUV = shadowMapUV + p e n u m b r a F i l t e r M a x S i z e ∗sampleUV ;

10
11 f l o a t sampleDepth = shadowMapTexture . SampleLevel ( po in tClampSampler , sampleUV , 0 ) . x ;
12
13 i f ( sampleDepth < z_shadowMapView )
14 {
15 a v g B l o c k e r s D e p t h += sampleDepth ;
16 b l o c k e r s C o u n t += 1 . 0 f ;
17 }
18 }
19
20 i f ( b l o c k e r s C o u n t > 0 . 0 f )
21 {
22 a v g B l o c k e r s D e p t h /= b l o c k e r s C o u n t ;
23 r e t u r n AvgBlockersDepthToPenumbra ( z_shadowMapView , a v g B l o c k e r s D e p t h ) ;
24 }
25 e l s e
26 {
27 r e t u r n 0 . 0 f ;
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28 }
29 }

Listing 3: Penumbra calculation.

Function Penumbra first finds average blockers depth and then converts that value to actual penumbra with
AvgBlockersDepthToPenumbra. Listing 4 shows implementation of that function.

1 f l o a t AvgBlockersDepthToPenumbra ( f l o a t z_shadowMapView , f l o a t a v g B l o c k e r s D e p t h )
2 {
3 f l o a t penumbra = ( z_shadowMapView − a v g B l o c k e r s D e p t h ) / a v g B l o c k e r s D e p t h ;
4 penumbra ∗= penumbra ;
5 r e t u r n s a t u r a t e ( 8 0 . 0 f ∗ penumbra ) ;
6 }

Listing 4: Average blockers depth to penumbra conversion.

This function should be implemented such that it suits your needs.
The basic idea is to take distance between pixel we’re calculating shadows for z_shadowMapView and av-
erage blockers depth. The bigger that distance is the bigger the penumbra should be. In case of the demo
accompanying this article depths are all in shadow map’s view space. The 3rd line of code calculates the
distance and "normalizes" it. Later on we square it to get rid off of possible minus sign but also to make
more visible transition between fully-hard and fully-soft shadows. Finally, the penumbra is scaled by some
constant and brought down to [0,1] range.
The original formula from [7] is a bit different from listing 4 and takes light’s size into account directly,
making it more physically correct. It is shown in listing 5.

1 f l o a t AvgBlockersDepthToPenumbra ( f l o a t l i g h t S i z e , f l o a t z_shadowMapView , f l o a t
a v g B l o c k e r s D e p t h )

2 {
3 f l o a t penumbra = l i g h t S i z e ∗ ( z_shadowMapView − a v g B l o c k e r s D e p t h ) / a v g B l o c k e r s D e p t h ;
4 }

Listing 5: Average blockers depth to penumbra conversion from [7].

You should fiddle with that function to get the look and feel of soft shadows and hard-to-soft transition that
accomodates your needs.

For the sake of completion listing 6 shows how penumbra estimation function is used in conjunction
with actual shadow map sampling.

1 f l o a t penumbra = Penumbra ( g r a d i e n t N o i s e , shadowMapUV , z_shadowMapView , 16) ;
2
3 f l o a t shadow = 0 . 0 f ;
4 f o r ( i n t i = 0 ; i < 1 6 ; i ++)
5 {
6 f l o a t 2 sampleUV = V o g e l D i s k O f f s e t ( i , 16 , g r a d i e n t N o i s e ) ;
7 sampleUV = shadowMapUV + sampleUV∗penumbra∗ s h a d o w F i l t e r M a x S i z e ;
8
9 shadow += shadowMapTexture . SampleCmp ( l inea rC lampCompar i sonSample r , sampleUV ,

z_shadowMapView ) . x ;
10 }
11 shadow /= 1 6 . 0 f ;

Listing 6: Shadows computation with penumbra used as kernel scale.
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Figure 7: Regular contact-hardening soft shadows. We clearly see how far from the ground objects are. Red
rectangle indicates area with shadows with highly varying penumbra size hence some jittering/jaggies can be
seen. These jaggies are caused by the fact that some pixels (randomized by interleaved gradient noise) fall
in areas of zero penumbra and some in areas of maximum penumbra hence varying lightness/shadowness of
pixels.

In line 9th, instead of using traditional shadow mapping by sampling shadow map and comparing depths,
we use function SampleCmp together with linearClampComparisonSampler sampler to let hardware take
four closest samples, compare them all and bilinearly filter the results. This is much faster than doing that in
traditional way.

Figure 7 presents contact-hardening soft shadows in action.

2.2 Penumbra Mask
Penumbra estimation, if uses the same number of samples as actual shadow mapping, can be equally expen-
sive as actual full soft shadow mapping. So the cost of contact-hardening soft shadows is twice as big in
this case. Lowering the number of samples by half (only for penumbra) can significantly reduce rendering
time. It will still be a few dozens percent slower than full non-contact-hardening soft shadows though. The
simplest way to significantly reduce rendering time is to apply the same trick that we use all the time in
real-time rendering – render at lower resolution.

Shadows themselves need full-screen resolution because they are very high frequency phenomenon
(there are rapid changes in intensity of the signal – there is a shadow of an object for a few pixels and
then suddenly there can be a fully lit area, with shadow ending abruptly). But penumbra is actually changing
gradually quite often so it is a good candidate for rendering at lower res and then upsampling the results. In
essence, we split the shadow mask generation pass in two passes: first one that computes penumbra mask
at quarter res (penumbra mask pass) and second that computes actual soft shadows but samples penumbra
from the penumbra mask (shadow mask pass). Figure 8 shows the result of that change. As you can see it’s
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Figure 8: Soft shadows with penumbra rendered in a separate pass in lower res.

quite nice with the exception that penumbra often ends abruptly (look at those oblong poles’ shadows). If
we look at how upsampled (bilinearly) penumbra mask looks like we will understand why (figure 9). We
have for instance areas with maximum penumbra (white color), interleaved with zero penumbra areas (black
color). The problem was there before but because we rendered in full res interleaved gradient noise was
equally good for sampling for both shadows and penumbra. Now that we render penumbra in lower res it
is not enough. Not all is lost though. A simple solution is to increase penumbra’s sampling kernel’s size.
Multiplying by 1.2 (with regard to what is used for actual shadow mapping) will result in what is seen in
figure 10.

Figure 10’s caption describes problem with swimming bubbles – even though we scaled the kernel it is
not enough to eliminate all artifacts. We need another hack to fix this. The solution is to blur the penumbra
mask to sort of soften the bubbles. Figure 11 shows how penumbra mask looks like when blurred with 7×7
separable Gaussian blur with σ = 3. Figure 12 shows the final result of both applying kernel scaling and
blurring the penumbra mask.

If you have an eye for detail you will notice that the problem we had before, with abruptly ending
penumbra, has been reintroduced somewhat (compare shadow of a post on the left). It’s not as bad as in
figure 8 but little worse than in figure 10. So why is it back exactly? Because we blurred the penumbra mask
and thus made zero-penumbra regions to bleed onto full-penumbra regions. We can fix this again by simply
scaling penumbra kernel by more than 1.2. Of course, we cannot increase that scale indefinitely as at some
point penumbra estimation will start to miss occluders and the result will not be conformant with what the
shadow mask pass is sampling. But there are values in range about [1.2,1.6] where vast majority of artifacts
is gone.

Blurring penumbra mask introduces two other problems that don’t necessarily need to be fixed for the
effect to look good but it’s worth knowing about them.
As we know, penumbra mask is calculated in lower res in screen space. We blur it to alleviate artifacts that
stem from rendering in low res. But because we’re working in the camera’s screen space, blurring "just
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Figure 9: Penumbra mask visualized.

Figure 10: Soft shadows with penumbra rendered in a separate pass in lower res using kernel scaling trick.
Red rectangles outline the same types of areas that were described in caption of figure 7. This time, because
we’re rendering in lower res and upsample, jittering is more obvious and looks like sort of bubbles (despite
kernel scaling trick). It wouldn’t be a big problem if it wasn’t for a fact that very distracting swimming
occurs under camera motion.
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Figure 11: Penumbra mask blurred visualized.

Figure 12: Soft shadows with penumbra rendered in a separate pass in lower res. Kernel scaling of 1.2 for
penumbra estimation applied. Also, penumbra mask used is blurred with 7×7 separable Gaussian blur with
σ = 3.
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like that" will make penumbra mask to bleed/blend between geometries that are at possibly very different
depths/distances from the camera. This is a huge problem for screen space effects like screen space ambient
occlusion where they are immediately seen. But it turns out this is almost no problem for penumbra mask
computation. If you want you can do smart blurring by sampling the depth buffer and compare depths but
that is really not necessary in my opinion.
Another problem is a bit more annoying. Because we blur in screen space with a constant-size kernel, the
farther away the camera goes from a shadow, the more penumbra blurring kicks in. This will have the
effect of decreasing penumbra size for shadows that are far away from the camera (making soft shadows
harder). To fight this just scale penumbra blur kernel using distance from pixel to the camera, just as it is
used in effects like screen space ambient occlusion. Note that this solution is not implemented in the demo
application, but I quickly prototyped it locally and found it to work as expected.

Penumbra blurring is a must to avoid swimming bubbles. But it is possible to avoid blurring in of smaller
values onto bigger values (this effect decreases penumbra size). Before blurring the penumbra mask with
7×7 kernel you can first use 7×7 max filter. These two, max and blur combined, will have the effect of only
blurring outwards so no bigger values will ever be washed out by smaller ones. This idea actually sounds
better than it works. The problem is that max filter loses information, penumbra information in this case, and
this leads to a lot of subtle artifacts. Hence I’m not recommending using that filter. I’ve tried a multitude of
combinations of max and Gaussian blur filters and always retracted to one single Gaussian blur pass. Also
due to performance reasons.

There is actually one more alternative solution to drawbacks that blurring of the penumbra mask brings.
Look at listing 3, line 27. Now look at figure 9. As you can see, when a pixel is fully lit, i.e. it does not have
any occluders, we return 0. But what if we returned 1 instead? The pole’s (on the left) penumbra would not
be affected by blurring at all and that shadow would look correct regardless of distance of a pixel from the
camera. At least in this case it would be all fine. In other cases we would have reversed artifacts. Earlier our
problem was that distant shadows that should be soft would become hard. Here it would be the opposite –
distant shadows that are hard would become soft. Unless we scaled Gaussian blur kernel according to pixel’s
distance from the camera of course.
One more important property of outputting 1 by default instead of 0 is that scaling the kernel in penumbra
mask pass is no longer necessary. So in the end you might prefer to output 1 on default.

There has been a lot of dicussion about problems related to rendering penumbra in a separate pass in
lower res and how to fix them. Let’s now sum things up. To get contact-hardening soft shadows we need
to know what penumbra a pixel has. To calculate penumbra fast we need to do it in a pass separate from
shadow mask because we can do it in lower resolution as penumbra is rather low frequency phenomenon.
When we do so, things generally work except for some artifacts. To fix those artifacts it is usually sufficient
to blur the penumbra mask and increase kernel size when sampling the shadow map in the penumbra mask
pass. The latter is not necessary if penumbra mask outputs 1 instead of 0 on default.

At this point you should have nice contact-hardening soft shadows that are almost as fast as non-contact-
hardening soft shadows. There is one last problem though that I wasn’t able to solve. Again, because we’re
rendering penumbra in low res and we also blur it, there are some shadows swimming where areas with
highly varying penumbras blend. This usually is a problem if you use too small shadow map for too big
scene’s area. But that is something you usually avoid by using cascade shadow mapping for instance. So all
in all little shadows swimming that is left in those situations can be neglected.
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2.3 Min Filter
Before I ever came up with an idea of penumbra mask I first came with an idea of using a min filter on a
shadow mask. This solution is not appealing to me today but I wanted to mention it. It is implemented in
the demo application but it’s turned off "hardcodingly" so you need to fiddle with the source code to be able
to turn it on.

In standard CHSS we first find average blocker’s depth. Since that is expensive part of the algorithm I
looked for ways to speed this up, even if they are only approximations. I came up with an idea to, instead of
finding average blocker’s depth, use minimum depth from the shadow map over some texels region (region
of max penumbra size of course). In average blocker’s depth we sample a bunch of texels, say in a 5× 5
shadow map’s region, to see if they are closer to the light source than the pixel we’re calculating penumbra
for; those that are closer to the light source are averaged together. The idea of min filter is to just take a single
min value over the whole filter region 5×5 and use that directly instead of the average blocker’s depth. The
reason why min filter makes sense is that this value will always be closer to the light source than the pixel
we’re calculating penumbra for. So it is some kind of blocker’s depth. Not very sophisticated and rather
crude one but still.

But why would you do that if you can just compute the average? Because applying min filter over a
region does not require from us doing it in the shadow mask pass. We can compute min shadow map over
a shadow map in a separate pass. Moreover, min filter is a separable filter, which means we don’t have to
take n2 samples (assuming n× n region) but we can do two passes, horizontal and vertical, each requring
n samples, totalling 2n. We traded quadratic complexity (dependent on the screen’s resolution) for linear
complexity (dependent on shadow map size).

One problem with the min filter is that, by its nature, it loses a lot of information. It will create lumps
of pixels, with all pixels in a lump having the same depth, and these depths will often differ significantly. A
solution to that is to blur the min shadow map. Later, in the shadow mask pass you simply sample the blurred
min shadow map and use that instead for the average blocker’s depth. Blurring the min shadow map will
have the effect of pushing those min values a bit towards pixels, farther from the light source, what could
possibly push them behind pixels that use them (an "occluder" ends up being behind a pixel). In practice
however that is not a problem.

Figure 13 shows the results. Compare that to figure 12. One change is in round shadows of an adornment
in the top middle part of the figure. Figure 12 handled that nicely whereas in figure 13 we see how min depth
from some distant geometry is flooding neighbours, including the adornment, and makes its penumbra very
large. Another problem occurs on the shadows of a column that is spread from the left to the center of the
figures. Both the top pole’s min depth is flooding the column as well as some distant geometry on the bottom
left of the picture, both making the column’s shadows in the middle very penumbra-large.

So we know min filter kind of sucks. Does it have any advantages over solution we discussed in the
previous section? Yes. Because min filter works in shadow map’s space and not in screen space we don’t
have any swimming artifacts under camera’s motion. That is a nice feature of that algorithm as it makes it
more stable.

3 Checkerboarding
Since the advent of "even more next-gen" consoles like PS4 Pro developers decided to aim even higher in
terms of quality and try touching the magical 4k barrier. PS4 Pro indeed has measurably more computing
power than bare bones PS4 but not enough to pull off 4k just like PS4 handled full HD. So developers
resorted to kind of cheating to achieve 4k with only half of power available. To checkerboarding.
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Figure 13: Soft shadows with penumbra calculated using min filter applied to shadow map.

Figure 14: Checkerboard pattern.

Look at figure 14. The idea of checkerboarding is to perform calculations only every other pixel in
checkerboard pattern. This way we only need half of computing power. The missing pixels are then filled in
some way. The tricky part is figuring out this "some way". The way that is implemented in the demo is by
averaging the neighbours. Take a look at the figure again. Assume black pixels represent those for which we
calculate shadows. Now think about one of the white pixels, which is not computed. The idea of averaging
is to simply take the four neighbouring black pixels, average them and plug that value into the white pixel.
There is one catch though. The neighbours might belong to different geometries and since shadows are
rather a high frequency phenomenon (as opposed to penumbra) averaging them thoughtlessly will end up
in artifacts. To do it right we need to perform depth comparisons of the neighbours with the pixel we’re
averaging for and only blend in those neighbours whose depths don’t differ much – it’s the very same way
we do it when performing bilateral upsampling in many postprocessing algorithms to save on computing
power, like SSAO or depth of field.
Alternatively, instead of computing averages we could employ temporal filtering and flip the checkerboard
pattern every second frame. This should result in shadows quality being on par with full res shadow mask.

If you have ever tried computing a high frequency signal in low res and then upsample it you know that
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this just does not work well. It’s hard to make SSAO stable, which is quite low frequency effect, let alone
shadow mask. That is true when the low res we are talking about means computing in a buffer which is half
of the screen’s width in width and half of the screen’s height in height, or in other words four times smaller.
In this scenario problems are mostly visible at oblique angles. When the camera is looking straight ahead
on a wall with some even-not-that-smooth-shadows it’s okay. But once the camera is at an oblique angle to
some floor, swimming artifacts appear, stemming from undersampling, and they are extremely distracting.
You might increase the resolution of the low res buffer such that overall it is twice the size of the screen’s
resolution but that will not eliminate the problem – swimming will remain, although it will be reduced a bit.

If instead of trying to squeeze as much as possible from rendering in low res and upsampling you will
render in full res but in checkerboard pattern, what requires only half of memory and computing only half
of the pixels, you will find out that the swimming problem at oblique angles is completely gone. That is the
most powerful feature of this algorithm. There will still be some minor swimming artifacts in very detailed
areas of the screen where you just don’t have that info you would have had if you had stayed in standard full
res but there are high chances that the result will be good enough.

Truth to be told, there is a little lie in statement that checkerboarding costs half as much as full res path.
Checkerboarding requires smart upsampling, which includes sampling the depth buffer, and that costs some
time. This pass’s time is however constant. So the more expensive the checkerboard res computation pass
the less, relatively, upsampling costs.

Checkerboarding is supported in the demo application. The application creates a separate render target
for storing results of checkerboarded shadow mask. This render target is of height the same as the screen’s
height but with half the width. Checkerboard-computed pixels are "packed" into this buffer and later, in
the upsample pass, unpacked. Also the missing pixels are filled in (interpolated). Source code that handles
checkerboarded shadow mask in shaders is located in two places. First, there are some minor modifications
to the shadow mask pass itself to handle checkerboarding. The second place is a dedicated shader that
performs upsampling. The code is rather easy to follow. One important change is in the gradient noise
formula in the shadow mask pass. Using the original formula made samples look less random than in full
res. I experimented with the formula and found one modification to work reasonably well but I think that
one could come up with a more scientific-based formula. Let’s now see the only modification to the shadow
mask shader code, presented in listing 7.

1 f l o a t 2 CheckerResPixe lCoordToFul lResUV ( i n t 2 p i x e l C o o r d )
2 {
3 p i x e l C o o r d . x ∗= 2 ;
4 i f ( p i x e l C o o r d . y % 2 == 1)
5 p i x e l C o o r d . x += 1 ;
6 r e t u r n ( ( f l o a t 2 ) p i x e l C o o r d + f l o a t 2 ( 0 . 5 f , 0 . 5 f ) ) ∗ s c r e e n P i x e l S i z e ;
7 }
8
9 . . .

10
11 # i f n d e f USE_CHECKER
12 f l o a t 2 uv = i n p u t . t exCoord ;
13 f l o a t g r a d i e n t N o i s e = TwoPi ∗ I n t e r l e a v e d G r a d i e n t N o i s e ( uv∗ s c r e e n S i z e ) ;
14 # e l s e
15 f l o a t 2 uv = CheckerResPixe lCoordToFul lResUV ( p i x e l C o o r d ) ;
16 f l o a t g r a d i e n t N o i s e = TwoPi ∗ I n t e r l e a v e d G r a d i e n t N o i s e ( uv∗ s c r e e n S i z e ∗ f l o a t 2 ( 1 . 0 f , 4 . 0

f ) ) ;
17 # e n d i f

Listing 7: Checkerboarding in the shadow mask shader.
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Figure 15: Shadow mask calculated in checkerboard resolution and upsampled.

As you can see the only modification to the interleaved gradient noise function is multiplication of the
y-coordinate by 4.

In the upsampling shader a few optimizations can be turned on/off via defines what can make the shader
harder to follow but it really does no magic. One of the optimizations is using 16-bit floating-point (linear)
depth buffer. Second and third ones, more important, involve using GatherRed instructions, both on the
shadow mask and the depth buffer (both are one-channel textures), to save on sampling instructions.

Figure 15 shows checkerboarded shadow mask in action. With careful eye inspection one can indeed see
that the dithered smooth shadows are a bit more crude in the checkerboard variant.

4 Demo
As it was already mentioned there is the demo application accompanying this article. It is implemented
using framework MaxestFramework [13] and uses Direct3D 11 as rendering API. It is located in [11].

Key configuration:

• WSAD + mouse – camera movement.

• Shift – speeding up.

• Space – aligns the light direction with the current camera’s view vector.

• Q – if pressed it will display penumbra mask.

• E – if pressed penumbra mask blurring is turned off, what will let see bubbles artifacts.

• F4 – recompile shaders.
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Pass Time
Regular Shadow Mask 0.84 ms
Regular CHSS Shadow Mask 1.72 ms
Penumbra Mask 0.115 ms
Shadow Mask using Penumbra Mask 0.62 ms
Penumbra Mask + Shadow Mask using Penumbra Mask 0.74 ms
Regular CHSS Shadow Mask + Checkerboarding 1.17 ms
Penumbra Mask + Shadow Mask using Penumbra Mask + Checkerboarding 0.76 ms

Table 1: Performance on GeForce 660 GTX in 1080p and 20482 shadow map resolution. All shadow mask
passes take 16 samples. Penumbra Mask takes 32 samples.

• ESC – exit.

The demo’s HUD displays a multitude of various options to turn on/off and tweak.

4.1 Performance Comparison
Table 1 shows exemplary performance comparisons for the view presented in the screenshots shown through-
out the article. Note here that penumbra pass takes two times more samples (32) than the shadow mask pass
(16) while in the original paper [7] this proportion was reversed. One reason is that in this demo we use
hardware bilinear shadow map samples filtering so in the end we are not using 16 shadow map samples but
actually 64. Another reason is that we could in fact use a smaller number of samples for penumbra, like 16,
and this works good but only in the original PCSS implementation. When using penumbra mask pass with
only 16 samples then some small artifacts start to pop up. I found 32 samples to work good in quarter res
of penumbra mask pass and 16 to be okay for original PCSS. The demo lets you switch between 16 and 32
samples used in penumbra estimation to see the difference.

Regular Shadow Mask is a pass that uses no contact-hardening and whose results are shown in figure 5.
Next, there is Regular CHSS Shadow Mask whose results are in figure 12. CHSS is roughly two times more
expensive than no-CHSS approach. Note here that penumbra pass takes 32 samples whereas shadow mask
takes 16. That would imply that Regular CHSS Shadow Mask should be more than two times as expensive
as Regular Shadow Mask. It’s not because as you can see in figure 12 most shadows have low penumbras,
thus shadow map sampling kernels are not wide. In case where shadow map sampling kernels of all screen’s
pixels are maxed the performance difference would be greater.

Now going to the gist. Performance measurements for Shadow Mask using Penumbra Mask clearly
depict great performance boost. Together with Penumbra Mask both these passes jointly take 0.74 ms what
is more than two times faster than Regular CHSS Shadow Mask pass at 1.72 ms. The reason for that is
that in Regular CHSS Shadow Mask most performance hit comes from penumbra estimation (32 shadow
map samples) and this part is what has been optimized. Note that performance of Penumbra Mask + Shadow
Mask using Penumbra Mask (0.74 ms) is even better than Regular Shadow Mask’s (0.84 ms). The reason for
that surprising difference is obviously that for a tested scene most screen’s pixels in penumbra variant have
small shadow map sampling kernels and that is what is mostly responsible for great performance. However,
in situations where the whole screen is filled with max-penumbra pixels the performance of Penumbra Mask
+ Shadow Mask using Penumbra Mask is only about 10-15% worse than in Regular Shadow Mask pass.

Finally, checkerboarding indeed is capable of speeding up Regular CHSS Shadow Mask. It does not
perform well when we use penumbra mask though. The reason is that Shadow Mask with Penumbra Mask
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pass becomes so cheap that checkerboarding-related operations like upsampling become very expensive,
relatively. The take-away for checkerboarding is to use it only when the pass that it is optimizing is relatively
expensive.

4.2 Future Work
This work can further be improved, both on the penumbra generation side as well shadow mask.

Using penumbra mask greatly improves performance but comes with some swimming artifacts which
might or might not be a problem. Possibly using temporal filtering could help here. Instead of rendering
penumbra mask in quarter res we could still render in full res but only compute one pixel in a 2× 2 quad,
filling the remaining pixels in subsequent frames. Given that penumbra mask contains low frequency data
this could work.

When it comes to shadow mask it could be beneficial to use more than one mipmap of the shadow map.
This would be just for efficiency purposes. By increasing filtering radius we induce more performance hit
due to texture cache misses. For samples that are farther we could sample the second mipmap of the shadow
map. This applies to penumbra mask as well.

Implementation of temporal checkerboarding is also tempting. Quality should be comparable to full res
shadow mask and performance increase should be significant. This could be particularly desirable if we
needed more shadow map samples.

5 Conclusions
The point of this article was to present an efficient way to render contact-hardening soft shadows, based on
original idea from [7]. I believe that separation of penumbra estimation (in lower res) and shadow mask
rendering is the way as it allows for achieving performance nearly as good as when rendering regular soft
shadows. There is a cost in form of some swimming artifacts which should not be a deal-breaker. The
overall image quality boost that CHSS brings is at least worth exploring, given that performance with regard
to non-CHSS will suffer only a tiny bit with penumbra mask approach.

In this paper we discussed:

• Efficient soft shadows with Vogel disk and interleaved gradient noise.

• Original PCSS implementation.

• Penumbra mask as a way to decouple penumbra estimation from shadow mask generation to greatly
improve performance.

• Min filter as another way to decouple penumbra estimation from shadow mask generation. Worse
quality and performance than in penumbra mask approach though.

• Use of checkerboarding with shadow mask generation.
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